38 research outputs found

    From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction

    Get PDF
    Visual multimedia have become an inseparable part of our digital social lives, and they often capture moments tied with deep affections. Automated visual sentiment analysis tools can provide a means of extracting the rich feelings and latent dispositions embedded in these media. In this work, we explore how Convolutional Neural Networks (CNNs), a now de facto computational machine learning tool particularly in the area of Computer Vision, can be specifically applied to the task of visual sentiment prediction. We accomplish this through fine-tuning experiments using a state-of-the-art CNN and via rigorous architecture analysis, we present several modifications that lead to accuracy improvements over prior art on a dataset of images from a popular social media platform. We additionally present visualizations of local patterns that the network learned to associate with image sentiment for insight into how visual positivity (or negativity) is perceived by the model.Comment: Accepted for publication in Image and Vision Computing. Models and source code available at https://github.com/imatge-upc/sentiment-201

    Comparing Fixed and Adaptive Computation Time for Recurrent Neural Networks

    Get PDF
    Adaptive Computation Time for Recurrent Neural Networks (ACT) is one of the most promising architectures for variable computation. ACT adapts to the input sequence by being able to look at each sample more than once, and learn how many times it should do it. In this paper, we compare ACT to Repeat-RNN, a novel architecture based on repeating each sample a fixed number of times. We found surprising results, where Repeat-RNN performs as good as ACT in the selected tasks. Source code in TensorFlow and PyTorch is publicly available at https://imatge-upc.github.io/danifojo-2018-repeatrnn/Comment: Accepted as workshop paper at ICLR 201

    Class-Weighted Convolutional Features for Visual Instance Search

    Get PDF
    Image retrieval in realistic scenarios targets large dynamic datasets of unlabeled images. In these cases, training or fine-tuning a model every time new images are added to the database is neither efficient nor scalable. Convolutional neural networks trained for image classification over large datasets have been proven effective feature extractors for image retrieval. The most successful approaches are based on encoding the activations of convolutional layers, as they convey the image spatial information. In this paper, we go beyond this spatial information and propose a local-aware encoding of convolutional features based on semantic information predicted in the target image. To this end, we obtain the most discriminative regions of an image using Class Activation Maps (CAMs). CAMs are based on the knowledge contained in the network and therefore, our approach, has the additional advantage of not requiring external information. In addition, we use CAMs to generate object proposals during an unsupervised re-ranking stage after a first fast search. Our experiments on two public available datasets for instance retrieval, Oxford5k and Paris6k, demonstrate the competitiveness of our approach outperforming the current state-of-the-art when using off-the-shelf models trained on ImageNet. The source code and model used in this paper are publicly available at http://imatge-upc.github.io/retrieval-2017-cam/.Comment: To appear in the British Machine Vision Conference (BMVC), September 201

    Budget-aware Semi-Supervised Semantic and Instance Segmentation

    Get PDF
    Methods that move towards less supervised scenarios are key for image segmentation, as dense labels demand significant human intervention. Generally, the annotation burden is mitigated by labeling datasets with weaker forms of supervision, e.g. image-level labels or bounding boxes. Another option are semi-supervised settings, that commonly leverage a few strong annotations and a huge number of unlabeled/weakly-labeled data. In this paper, we revisit semi-supervised segmentation schemes and narrow down significantly the annotation budget (in terms of total labeling time of the training set) compared to previous approaches. With a very simple pipeline, we demonstrate that at low annotation budgets, semi-supervised methods outperform by a wide margin weakly-supervised ones for both semantic and instance segmentation. Our approach also outperforms previous semi-supervised works at a much reduced labeling cost. We present results for the Pascal VOC benchmark and unify weakly and semi-supervised approaches by considering the total annotation budget, thus allowing a fairer comparison between methods.Comment: To appear in CVPR-W 2019 (DeepVision workshop

    Cultural Event Recognition with Visual ConvNets and Temporal Models

    Get PDF
    This paper presents our contribution to the ChaLearn Challenge 2015 on Cultural Event Classification. The challenge in this task is to automatically classify images from 50 different cultural events. Our solution is based on the combination of visual features extracted from convolutional neural networks with temporal information using a hierarchical classifier scheme. We extract visual features from the last three fully connected layers of both CaffeNet (pretrained with ImageNet) and our fine tuned version for the ChaLearn challenge. We propose a late fusion strategy that trains a separate low-level SVM on each of the extracted neural codes. The class predictions of the low-level SVMs form the input to a higher level SVM, which gives the final event scores. We achieve our best result by adding a temporal refinement step into our classification scheme, which is applied directly to the output of each low-level SVM. Our approach penalizes high classification scores based on visual features when their time stamp does not match well an event-specific temporal distribution learned from the training and validation data. Our system achieved the second best result in the ChaLearn Challenge 2015 on Cultural Event Classification with a mean average precision of 0.767 on the test set.Comment: Initial version of the paper accepted at the CVPR Workshop ChaLearn Looking at People 201

    Mask-guided sample selection for Semi-Supervised Instance Segmentation

    Get PDF
    Image segmentation methods are usually trained with pixel-level annotations, which require significant human effort to collect. The most common solution to address this constraint is to implement weakly-supervised pipelines trained with lower forms of supervision, such as bounding boxes or scribbles. Another option are semi-supervised methods, which leverage a large amount of unlabeled data and a limited number of strongly-labeled samples. In this second setup, samples to be strongly-annotated can be selected randomly or with an active learning mechanism that chooses the ones that will maximize the model performance. In this work, we propose a sample selection approach to decide which samples to annotate for semi-supervised instance segmentation. Our method consists in first predicting pseudo-masks for the unlabeled pool of samples, together with a score predicting the quality of the mask. This score is an estimate of the Intersection Over Union (IoU) of the segment with the ground truth mask. We study which samples are better to annotate given the quality score, and show how our approach outperforms a random selection, leading to improved performance for semi-supervised instance segmentation with low annotation budgets.Comment: Preprint submitted to Multimedia Tools and Application
    corecore